zinfi

Architecture Detalls

int.ord.002.03 | 07.11.25
UPM 25.x

ZINFI Confidential & Proprietary
Shared Under NDA

1 | © 2025 ZINFI Technologies Inc. All Rights Reserved. ZINFI Confidential & Proprietary Document - Shared under NDA.

zinfi

Contents

a0 Yo [T { Lo o

Architectural Insightscccciii———————————
System CoOmMPONENES SUMMATY ...coiicuiiiiiisieiiisir iR E e Ea R R e s e s e R R e e e s an e e e s nn e
L3 1= o OSSPSR
(@311 0 97N o 1= 4o) o 1SR

S T=T ALY g o]] o= 4o) o R
= = IS Y PSSR
AULRENTICALION SEIVET ... e s e e s s s s s sann e e e e e s e e s mnn e e e e e s sas s s nmnnneeeessassnnnnnnn
Authentication COMPONENTS SUMMBIYottt ettt e st e e s anbe e e e s anse e e e e anneeeeeanneeeas

CONLIOl FIOWS ... et rrr e s s s s s s s s smas s s s s s ma e s s s nmas s s s s e mnsss s e rsnnssssennnnsssssnnnnssnssnnnnnsnnens
OpenID-OAULh LOGIN PrOCESSccceiiiiiiiiiismniereisssssssssssees e s s s ssssssmssaeessssasssssmnsesesessasssssnssssssessasssasnnssesssssssssnnnnsensnns
Authentication Server Validation CheCKS ..o
Application Database Validation ChECKSoii it e e
USEI ROIES ...
ASSIGNING GrOUPS 10 ROIES ...ttt e ekttt e e a et e e e st e e e ante e e e e annbe e e e annte e e e anneeeas
Flow of Control across MOAUIES..........cooiiiiiiiii ittt e e e e e e s e e e e e e e s e a e e e e e aeeeeeaeaeeeeeaeaeaeeeeeaeanaenennnnnns

2 | © 2025 ZINFI Technologies Inc. All Rights Reserved. ZINFI Confidential & Proprietary Document - Shared under NDA.

zinfi

3

Introduction

ZINFI UPM Architecture facilitates a separation of development of the graphical user interface — GUI code —
from development of the business logic or back-end logic (the data model). The view model is a value
converter, meaning the view model is responsible for exposing (converting) the data objects from the model
in such a way that objects are easily managed and presented. The Architecture was invented by ZINFI
specifically to simplify event-driven programming of user interfaces. The pattern was incorporated into UPM
embedding Angular JS, .NET Core and Microsoft SQL Server.

The ZINFI UPM’s Layered security architecture refers to security systems that use multiple components to
protect operations on multiple levels, or layers. The central idea behind layered security or defense is that in
order to protect systems from a broad range of attacks, using multiple strategies will be more effective. Layered
security involves security protocols at the system or network levels, at the application level, or at the
transmission level.

ZINFI UPM’s aSaaS is a ground-breaking technology in use, assisting you to tailor the application, hosted on
our infrastructure or yours.

ZINFI aSaaS architecture is hard to believe until one has seen it in action:

e Develop full enterprise class applications in a couple of weeks, without coding.
e Deploy as a SaaS Service or move behind the firewall in just 10 mouse clicks.
e Scale to address multiple partners, without changing a line of code.

e Upgrade painlessly to receive program enhancements with no impact on your customizations.

| © 2025 ZINFI Technologies Inc. All Rights Reserved. ZINFI Confidential & Proprietary Document - Shared under NDA.

zinfi

Architectural Insights

Client UCM Client
Application

Browser
HTML
Android
App

HTTPS
R L

10S App

Static Content
Layer

(HTML

Component)

Ul
Component

Layer

Web
Presentation
Layer

(Typescript)

Presents UCM P
ul

System Components Summary

Client

* The Client Interface of the UPM Application, which communicates with the UPM Client Application and utilized
to display the UPM Ul Components. Communication between the Client Application and Web Client is

processed via HTTP

* The UPM Application Ul is available in two formats:

Angular

Presentable

Format

S.

UCM Server Application UCM Data Server

S
[
>
©
-
(]
8
>
£
Q
(2]

Admin
Controller

Business
Logic Layer

(External API)

Non-Admin
Controller

Data
Access
Layer
(Inner API)

ADO.NET]|

== >

Stored
Procedures

Business
Logic
Layer

.NET CORE

» Desktop — The application runs through OS based Browser.

* Mobile — (a)Android — The application runs through a native app exclusively developed for Android.

(b) iIOS — The application runs through a native app made developed for iOS.

Client Application

+ UPM Client App consists of the Ul Component Layer which interacts with the Server App to call

Microsoft SQL Server

JSON
SRR ObJeCt --

services and fetch information to display via the Client Interface. It consists of the following layers:

+ Ul Component Layer — Designed in Angular using TypeScript.

« Static Content Layer — This layer contains the HTML components.

4 | © 2025 ZINFI Technologies Inc. All Rights Reserved. ZINFI Confidential & Proprietary Document - Shared under NDA.

zinfi

+ Web Presentation Layer — This layer contains the TypeScript code files, which gets
embedded with HTML components to produce the desired design of the page.

Server Application

The Server Application Core holds the UPM business logic layer, which includes interfaces and controllers.
These Controllers include abstractions for operations that will be performed using Infrastructure, such as data
access.

e Service Layer — Architected in .NET Core.

o This layer consists of the handler and service component classes written in TypeScript. These classes
are then invoked in Presentation Layer to deliver the Ul components.

o A service layer is an additional layer that mediates communication between the controller and
repository layer. The service layer contains business logic along with validation logic.

e Business Logic Layer [External API] — This Layer is designed in .NET Core. When the control enters from
Angular to .NET Core via the Service Layer, it first hits the Logic Layer.

o Admin Controller — This layer contains the API classes and method calls for Administrative module(s)
of ZINFI UPM.

o Non-Admin Controller — This layer contains the API classes and method calls for rest of the modules
of ZINFI UPM, except the administrative module(s).

e Data Access Layer [Inner API] — Designed in .NET Core, this layer contains the method definitions that are
called from the Logic Layer. With the help of ADO.NET Technology, UPM Server App communicates with Data
Server for retrieval of data (as required).

Data Server

This section contains the business logic of ZINFI UPM in Business Logic Layer and Relational Database to
store application data. Microsoft SQL Server is used for this purpose.

e Business Logic Layer — Contains Stored Procedures, Functions and Views which constitute
the business logic of ZINFI UPM.

e Relational Database — Contains data along with their relational constraints.

5 | © 2025 ZINFI Technologies Inc. All Rights Reserved. ZINFI Confidential & Proprietary Document - Shared under NDA.

zinfi

Authentication Server

Used for authenticating the client log-in request, in any one of the two ways:

e by retrieving the application token from Authentication Data Server, when logged-in directly using
ZINFI UPM.

e by retrieving the application token from Authentication Data Server via third-party API, when logged-
in using CRM login credentials utilizing Single Sign-On (SSO) functionality, for example, Salesforce,
MS Dynamics etc.

l:@ 1. Initiates Access
O =] —-------———mmmmmmmm e —————
-EJ Requests Auth. Code by providing Client ID
A and Redirection URL
--- Client Application

4. Requests Access using Auth. Code

Auth. Code and Client Secret

UCM Application Server

Authentication Components Summary
Technology used
» Identity Server, ASP.NET Core, OAuth

» Authentication server is used for enhanced security. Identity Server provides the OpenID and OAuth
services. ASP.NET Core is used for creating the Ul interfaces for login/logout.

Identity Server

* An authentication server that implements OpenID Connect (OIDC) and OAuth standards for ASP.NET
Core.

+ Designed to provide a common way to authenticate requests to the application.

» Typically involves token issuance, verification, and renewal without any user interface.

6 | © 2025 ZINFI Technologies Inc. All Rights Reserved. ZINFI Confidential & Proprietary Document - Shared under NDA.

zinfi

Advantages of using separate authentication server

De-couples the authentication logic from the system.
Client-specific resource access grants.

Overall, provides better-secured SSO with other services.

Control Flows

OpenlID-OAuth Login Process

Authentication Server Validation Checks

The architecture of UPM follows the OpenID Implicit Flow methodology. In this new process, when a user
logs into the application, the authentication process follows Implicit Flow steps:

1.

AR R

Client Application further referred to as Client (JavaScript / C#) prepares an Authentication Request
containing the desired request parameters.

Client sends the request to the Authentication Server.
Authentication Server authenticates the End-User.
Authentication Server obtains End-User Consent/Authorization.

Authentication Server sends the End-User back to the Client with an ID Token and, if requested, an
Access Token.

Client validates the tokens and retrieves the End-User’s Subject Identifier.

Application Database Validation Checks

After authenticating the user from the Authentication Server, checks are done that whether the same exists in
Application Database (in Authentication Data Server). If the user does not exist there, then it is created, so
that a user logging into the Application Database can be tracked.

User Roles

When the application logs-in with a user role after performing required validation checks, it queries table
Roles_Users — which keeps track of all users and the available role(s) that has been assigned to them. Only
roles assigned to that user are viewable. Example of roles are CMM, CP, Admin etc.

7 | © 2025 ZINFI Technologies Inc. All Rights Reserved. ZINFI Confidential & Proprietary Document - Shared under NDA.

zinfi

8

Assigning Groups to Roles

After a role has been selected by logged-in user, the application checks availability of groups that has been
assigned to that specific user role. For this purpose, the application queries table ROLE_GROUPS_ASSOC
— which keeps track of the group(s) that has been assigned to that role.

Flow of Control across Modules

After the user logs-in to the application, the flow of control across various modules are described below in the
order it occurs.

1. The Client Application sends HTTPS request to Server Application to fetch data required to display in
its Ul

2. The Server Application receives request from its predecessor, and then acts in following way:

a. The Ul Component Layer receives request. The Static Content Layer passes request to Web
Presentation Layer. The Web Presentation Layer receives request and passes the same for
further processing to Service Layer.

b. The Internal / MVVM Controller of Service Layer receives request and passes it to Logic Layer
[External API].

c. The Logic Layer receives request and checks, if the request is for administrative section of
application then it passes the same to System Controller, or else the request is passed to
Values Controller.

d. After processing request in Logic Layer, it is passed to Data Access Layer [Inner API]. For
further processing, through ADO.NET, the request is passed to Data Server.

3. In Data Server, the Business Logic Layer receives that request, and then calls the respective Stored
Procedure, Function or View as required based on logic written for processing. The raw data with
relational constraints are retrieved based on queries performed.

4. The resultant dataset tables from Data Server is transferred to Server Application in JSON format.

The JSON Result Object received from Data Server is moved through Data Access Layer [Inner API]
to Service Layer.

6. The Ul Component Layer transforms JSON Result Object to Presentable Format like Tables, Views
etc.

7. The Client Application receives that Presentable Format from Ul Component Layer of Server
Application, and then displays the same in the Ul to user.

| © 2025 ZINFI Technologies Inc. All Rights Reserved. ZINFI Confidential & Proprietary Document - Shared under NDA.

